Snow Photochemistry: 1. Light Absorption 2. Oxidant Generation 3. Impacts on Halogens and Organics

> Cort Anastasio UC Davis

Thanks to NSF for funding

But First – A Discussion of Liquid-Like Regions

- Florent and Jamie and co-authors say "Non!"
- But I say "Oui!" or at least "Généralement"
 - Are laboratory ices the same as snow? No.
 - Are laboratory ices a good mimic for snow? Probably...
- Semantics: what is cut-off between a QLL (no, or very low, solutes) and a QBL (quasi-brine layer with higher solute concentration)?
 - Use "liquid-like regions" (LLRs) as more general term
 - LLRs: solutes are not just at air-ice interface; QLL might be special case
 - There are other ice reservoirs: bulk ice, insoluble particles, more?
- We typically make our ice by slowly freezing aqueous solutions
 - Samples are illuminated, melted, analyzed
 - Thus we are measuring the entire sample
 - Based on our experimental evidence, we believe solutes are present in LLRs, although we do not know their locations (inclusions, interface...)
 - Measure photon flux using 2NB in same pellet size/geometry/container

Oui #1: Direct hv in/on Ice Behaves Like Liquid

- OH production from illumination of NO₃⁻, NO₂⁻, or HOOH (< 200 μM)
 - Ice results match T-dep of solution
 - Ice photolysis behaves like supercooled solution
 - Oui #2: Using lab NO₃⁻ quantum yields (QYs) predicts NO_x fluxes similar to field measurements
- PAH photodegradation
 - PHE = phenanthrene
 - 0.8 µM in Milli-Q or melted Summit snow; refroze as 1-mL pellets
 - Put on snow at Summit (Aug, midday)
 - Decay same in snow and Milli-Q
 - QY comparable to supercooled water
 - Gives short lifetime (hrs): Summit
 PAHs probably not in ice but in PM

Chu and Anastasio, JPC A, 2003

What about 2nd-Order Reactions? First, Consider a Freezing-Point Depression (FPD) Model of LLRs

• FPD picture for freezing a solution: solutes (A and B) are excluded from ice matrix and segregated into liquid-like regions...

- FPD model prediction of freeze-concentration factor, $F (= \Phi^{-1})$
- $F = [A]_{LLR} / [A]_{LIQ}$ if all A ends up in LLRs and does not precipitate $1/F = \Phi = V_{LLRs} / V_{LIQ}$, i.e., fraction of H₂O(liq) that end up in LLRs
- Dependence of *F* in FPD model
 - [TS] in LLR is set by T, independent of salt (e.g., [TS]_{LLR} = 5.3 M at -10 °C)
 - Thus F increases with lower total solute concentrations in solution
 - Similarly, *F* increases with decreasing T (which increases [TS]_{LLR})

Oui #3: Past Lab Evidence for FPD Model

- Composition measurements
 - Cho et al. (2002) used ¹H NMR to quantify fraction of H₂O present in LLRs in frozen NaCl ices
 - $F = (^{1}H NMR integral)^{-1}$
 - Above T_{eu}, msmts fit FPD model fairly well: *F* ~ 10-3000 near T_{eu}
 - Below T_{eu} still evidence for LLRs

- Past photochemistry measurements
 - Grannas et al. (2007) measured photochemistry of 2nd-order actinometer in ice
 - Msmts comparable to FPD for F up to \sim 70; underestimate F w/other conditions

Oui #4: ¹O₂* to Measure Freeze-Concentration Factors

- Method
 - Make solution with sensitizer (Rose Bengal), ¹O₂* probe (FFA), salt to adjust total solute (TS) concentration
 - Illuminate (549 nm); monitor FFA loss
 - Study as solution and ice pellets
 - Normalize results to photon fluxes
 - $F \approx$ ice rate / solution rate
- Results
 - Initial work (top): good agreement for T>T_{eu} and TS > 1 mM
 - Current work (bottom): good agreement for TS as low as 30 µM
 - Difference: lower [RB] in new work

Bower and Anastasio, Ongoing Work

Liquid-Like Regions "Conclusions"

- Are laboratory ices and FPD a good model for snow?
 - Probably in many (most?) cases
 - But for solutes that...
 - Precipitate, evaporate, aggregate, etc.
 - Need to also consider these processes
 - Even with LLR ≈ solution, situation is complicated and depends on [TS] & T
- Jamie & Tara's results show chem at "clean" air-ice interface is different
 - Probably important for volatile solutes that partition to interface
 - Might be important more broadly
- Much more work to do
 - Use field observations to help support/rebut laboratory results
 - Need lab studies of solute locations in different ice reservoirs (bulk ice/LLR/QLL/PM) and their chemical differences
 - Framework for including LLR/QLL/etc. chemistry: end of talk
- Discussion of LLR/QLL/etc. before I move on to next topic?

And now, my real (abbreviated) talk...

Snow Photochemistry: 1. Light Absorption 2. Oxidant Generation 3. Impacts on Halogens and Organics

Introduction

- Oxidants likely drive much of snowgrain chemistry, e.g.,
 - OH (hydroxyl radical) is important for oxidation of Br- and organics
 - ${}^{1}O_{2}^{*}$ (singlet oxygen) probably important oxidant for some organics
 - ³C^{*} (excited triplet states) might also be significant sink for organics
- First step in oxidant formation is typically light absorption by a chromophore
 - e.g., OH formed by photolysis of HOOH, NO_2^- , and NO_3^- on snowgrains

Light Absorption by OSIS at Barrow

- Light absorption by filtered, melted terrestrial snow (left figure)
 - HOOH, NO_3^{-} , and NO_2^{-} have insignificant absorption (but impt for OH formation)
 - HULIS (humics/fulvics?) account for ~ 50%; Unknown species ~ 50%
- Light absorption by filtered, melted, frost flowers, etc. (right figure)
 - Enormous light absorption by some of these: huge potential for photochemistry
 - FF ~ brine > Nilas ~ sea water >> sea ice ~ terrestrial surface snow
 - CDOM likely dominant chromophore; links microbes with photochemistry

Singlet Molecular Oxygen (¹O₂*)

- What are likely products from CDOM/HULIS/humics photochemistry?
 - ³C* (excited triplet states)
 - ${}^{1}O_{2}^{*}$ (singlet molecular oxygen), an excited (more reactive) form of O_{2}
 - Other: OH, VOCs, other...
- ¹O₂* formation steps
 - Sensitizer such as CDOM absorbs light to become triplet state (³C*)
 - We are using Rose Bengal (RB) as a model sensitizer
 - ${}^{3}C^{*}$ transfers energy to O_{2} to make ${}^{1}O_{2}^{*}$
 - ¹O₂* can oxidize electron-rich organics (PAHs, furans, phenols, sulfides...)
 - ³C* might also oxidize organics

¹O₂* Enhanced on Ice Compared to Liquid

- Method
 - Make solutions with sensitizer (RB), ¹O₂* probe (furfuryl alcohol, FFA), and salt to adjust total solute (TS) conc
 - Illuminate (549 nm); monitor FFA loss
 - Study as solution and ice pellets
 - Normalize results to photon fluxes
- Example of results
 - Conditions here:
 250 µM Na₂SO₄, 10 nM RB, –10°C ice
 - Kinetic plots for loss (top)
 - Photon-normalized rate constants (bot)
 - Freeze-concentration factor,
 - $F \approx k(\text{ice}) / k(\text{solution})$
 - $F \approx 11,300$ in this case

Fig. 1. (A) First-order plots for loss of furfuryl alcohol in a liquid sample (1.0 μ M FFA, 5 °C) and ice sample (0.10 μ M FFA, -10 °C). The inset shows details of FFA decay in the ice sample. Both samples contained 250 μ M total solutes (TS) as Na₂SO₄ and 10 nM Rose Bengal (RB) and were illuminated with 549 nm light. (B) Calculated first-order rate constants for loss of FFA (normalized to photon flux, which results in units of s⁻¹/s⁻¹ (Equation (1a))) calculated from the data in panel (A). The rate constant for FFA loss on ice is 11,300 (±2200) times higher than the value in the liquid sample.

Using ¹O₂* to Measure Freeze-Concentration Factors

- NaCl above T_{eu}
 - Good agreement between expt and FPD
 - Strong dependence on [TS]: implications
- NaCl below T_{eu}
 - All salt should be precipitated
 - But still evidence for LLR chemistry and dependence on [TS]
 - Cho et al. and Grannas et al. also saw evidence for LLRs below $\rm T_{\rm eu}$
- [¹O₂^{*}] can be greatly elevated on ice
 - Significant oxidant for organics on snow/ice?
- We also find [3C*] elevated on ice
 - Data not shown
 - Is it a significant oxidant on snow/ice?

 $\overline{\upsilon} Bower$ and Anastasio, New Data

How to Model Pollutant Oxidation in LLRs?

- Oxidation rate for pollutant P equals sum of its individual pathway rates: Rate of Loss of P = Rate from OH + Rate from ¹O₂* + Rate from hv + ... L_P = k_{OH+P}[OH][P] + k_{1O2*+P}[¹O₂*][P] + j_P[P] + ...
- Some complications
 - Relative to melted sample, some oxidants are enhanced in LLRs (e.g., ¹O₂*) while others are not (e.g., OH)
 - Need to consider air-ice partitioning and precipitation for P
 - Direct photodegradation (j_P) might be different in LLRs compared to solution based on Tara and Jamie's QLL work
- A framework for snow/ice photochemistry
 - If chemistry in other reservoirs (QLL, bulk ice, PM...) is important for a given compound or process...
 - ...and if chemistry in that reservoir is different from in the LLR...
 - ...then add rate of loss in each reservoir...

 $L_{P,ICE} = L_{P,LLR} + L_{P,QLL} + L_{P,BULK} + \dots$

- LLR chemistry seems similar to super-cooled liquid; QLL not; bulk ice?
- For simplicity, let's hope not all reservoirs are significant for chemistry

Thoughts on a Future Field Campaign

- Paul says "go up". I say "Get Down" (cue disco music)
- What is occurring in the snowpack? We need...
 - Firn air measurements (HO_x , HCHO, HOOH, O_3 , NO_x , light, met....)
 - Snow grain measurements (pH, Org C, Br-, HOOH, NO₂⁻, NO₃⁻...)
 - Rates of oxidant formation on snow grains
 - Modeling
- A science question that interests me: What are the possible impacts of decreased snow/ice extent on oxidation chemistry?
 - Less OH formation: \downarrow Br oxidation $\rightarrow \downarrow$ O₃ depletion and \downarrow Hg oxidation
 - \downarrow oxidation of deposited Org C (POPs, Org PM...)
 - Less ${}^{1}O_{2}^{*}$ and ${}^{3}C^{*}$: $\downarrow \downarrow$ Org C processing?
 - Are there feedbacks between oxidants and microbes?
 - CDOM is probably major source of ${}^{3}C^{*}$ and ${}^{1}O_{2}^{*}$
 - Do oxidants (${}^{3}C^{*}$, ${}^{1}O_{2}^{*}$, OH, HOOH...) alter microbe output?